Parameter extraction and complex nonlinear transistor models / G�unter Kompa.
Material type: TextSeries: Artech House microwave libraryPublisher: Boston : Artech House, [2020]Description: 1 online resource : illustrationsContent type:- text
- computer
- online resource
- 9781630817459
- 1630817457
- Microwave devices -- Mathematical models
- Microwave technology
- Microwave devices -- Mathematical models
- Technology, Engineering, Agriculture
- Technologie, Ingenieurswissenschaft, Landwirtschaft
- Technologie, ing�enierie et agriculture
- Electronics & communications engineering
- Elektronik, Nachrichtentechnik
- Ing�enierie �electronique et technologie des communications
- Electronics engineering
- Elektronik
- G�enie �electronique
- Microwave technology
- Mikrowellentechnik
- Technologie des micro-ondes
- 621.381/3 23
- TK7876
Description based on online resource; title from PDF title page (viewed on March 09, 2020)
Includes bibliographical references and index
Parameter Extraction and Complex Nonlinear Transistor Models -- Contents -- Preface -- Chapter 1 Introduction -- REFERENCES -- Chapter 2 Transistor Concepts: MESFET, HEMT, and HBT -- 2.1 INTRODUCTION -- 2.2 EVOLUTION OF FET DEVICES -- 2.2.1 Field-Effect Transistors -- 2.2.2 Heterojunction Bipolar Transistors -- 2.3 BASIC DEVICE STRUCTURES AND FUNCTIONING -- 2.3.1 MESFET -- 2.3.2 HEMT -- 2.3.3 HBT -- 2.5 SUMMARY -- REFERENCES -- Chapter 3 Classification of Transistor Models -- 3.1 INTRODUCTION -- 3.2 PHYSICAL MODELS -- 3.2.1 Numerical Physical Models -- 3.2.2 Analytical Physical Models
3.3 EMPIRICAL MODELS -- 3.4 EXPERIMENTAL MODELS -- 3.5 BEHAVIORAL MODELS -- 3.5.1 ANN-Based Models -- 3.5.2 X-Parameter-Based Models -- 3.6 SUMMARY -- REFERENCES -- Chapter 4 Classical Shockley Model and Enhanced Modifications -- 4.1 INTRODUCTION -- 4.2 LONG-CHANNEL (SHOCKLEY) MODEL -- 4.3 EXPERIMENTAL AND ANALYTICAL v(E)-CHARACTERISTICS -- 4.4 IMPROVED SHOCKLEY MODEL INCLUDING CARRIER VELOCITY SATURATION -- 4.5 TWO-REGION MODEL -- 4.6 SHORT-CHANNEL SATURATION MODEL -- 4.7 RELATIONSHIPS BETWEEN MESFET AND HEMT DC CHARACTERISTICS -- 4.7.1 Transconductance -- 4.7.2 Gate-Source Capacitance
4.7.3 MESFET and HEMT Transconductance Comparison -- 4.8 PROBLEMS AND SOLUTIONS -- 4.9 SUMMARY -- REFERENCES -- Chapter 5 Extrinsic Transistor Network at DC -- 5.1 INTRODUCTION -- 5.2 INTRINSIC CONTROL VOLTAGES FROM RESISTIVE NETWORK DE-EMBEDDING -- 5.3 REGRIDDING OF NONORTHOGONAL INTRINSIC VOLTAGES -- 5.4 REGRIDDING ISSUES WITH MATLAB -- 5.5 SUMMARY -- REFERENCES -- Chapter 6 Estimation of Model Element Values Based on Device Physical Data -- 6.1 INTRODUCTION -- 6.2 RESISTANCES -- 6.2.1 Ohmic Contact Resistance -- 6.2.2 Series Resistances -- 6.2.3 Gate Resistance, Gate Inductance
6.2.4 Gate Charging Resistance -- 6.3 CONDUCTANCES -- 6.3.1 Transconductance -- 6.3.2 Channel Conductance -- 6.4 CAPACITANCES -- 6.4.1 Gate-Source Capacitance -- 6.4.2 Gate-Drain Capacitance -- 6.4.3 Drain-Source Capacitance -- 6.5 DELAY TIME -- 6.6 CONTACT AND INTERCONNECT STRUCTURES -- 6.6.1 Device Contacting Pads -- 6.6.2 Bondwire Inductance -- 6.6.3 Via Hole Inductance -- 6.6.4 Air Bridge -- 6.6.5 Field Plate -- 6.7 SUMMARY -- REFERENCES -- Chapter 7 Small-Signal Transistor Model Complexity -- 7.1 INTRODUCTION -- 7.2 SMALL-SIGNAL TRANSISTOR OPERATION
7.2.1 Two-Port Y-Matrix Transistor Model -- 7.2.2 Generic Extrinsic Transistor Pi-Model -- 7.3 TRANSISTOR MODEL COMPLEXITY -- 7.3.1 Small-Periphery Devices -- 7.3.2 Large-Periphery Devices -- 7.3.3 High-Resistivity Silicon Substrates -- 7.4 SUMMARY -- REFERENCES -- Chapter 8 Reliable Parameter Estimates from Low-Frequency Measurements -- 8.1 INTRODUCTION -- 8.2 DETERMINATION OF GENERIC PI-MODEL PARAMETERS -- 8.2.1 Generic Transconductance and Output Conductance -- 8.2.2 Generic Capacitances -- 8.3 RELATIONS BETWEEN GENERIC AND PHYSICS-BASED PARAMETERS
8.4 APPROXIMATE DETERMINATION OF PHYSICS-BASED INTRINSIC ELEMENTS FROM GENERIC MODEL PARAMETERS
eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide