Sonochemistry : theory, reactions, syntheses, and applications / Filip M. Nowak, editor.
Material type: TextSeries: Chemical engineering methods and technologyPublisher: New York : Nova Science Publishers, Inc., [2010]Description: 1 online resourceContent type:- text
- computer
- online resource
- 9781621001478
- 1621001474
- 660/.2842 22
- QD801
Includes bibliographical references and index.
Description based on print version record.
English.
SONOCHEMISTRY: THEORY, REACTIONS, SYNTHESES, AND APPLICATIONS ; SONOCHEMISTRY: THEORY, REACTIONS, SYNTHESES, AND APPLICATIONS ; CONTENTS ; PREFACE ; SONOCHEMISTRY: A SUITABLE METHOD FOR SYNTHESIS OF NANO-STRUCTURED MATERIALS ; ABSTRACT ; 1. INTRODUCTION ; 2. SYNTHESIS OF NANOMETALS ; 2.1. Gold ; 2.2. Palladium ; 2.3. Tellurium ; 2.4. Tin ; 2.5. Ruthenium ; 2.6. Germanium ; 2.7. Selenium ; 2.8. Silver ; 3. SYNTHESIS OF METALLIC NANOALLOYS ; 3.1. Sn-Bi ; 3.2. Pd-Sn ; 3.3. Pt-Ru ; 3.4. Co-B ; 3.5. Au-Ag ; 3.6. Bimetallic Nanoparticles with Core-Shell Morphology ; 4. METAL OXIDE.
4.1. ZnO 4.2. CuO ; 4.3. V2O5 ; 4.4. Iron oxide ; 4.5. Manganese Oxide ; 4.6. In2O3 ; 4.7. TiO2 ; 4.8. PbO2 ; 4.9. Other Metallic Oxide ; 4.10. Rare-Earth Oxide ; 5. THE SONOCHEMICAL SYNTHESIS OF MIXED OXIDES ; 5.1. MVO4 ; 5.2. MTiO3 ; 5.3. MAl2O4 ; 5.4. MWO4 ; 5.5. MoO4 ; 5.6. Ferrites ; 6. NANOCOMPOSITES ; 6.1. Metal Oxide-Metal (Oxide) Nanocomposite ; 6.2. Organic-Inorganic Nanocomposite ; 6.2.1. Natural Fibers ; 6.2.2. Polymeric Based Nanocomposites ; 6.2.2.1 Poly(Methylacrylate) and Poly(Methylmethacrylate) ; 6.2.2.2. Polystyrene ; 6.2.2.3. Polypropylene.
6.2.2.4. Conducting Polymer 6.3. Carbonaceous Nanocomposite ; 6.4. Other Nanocomposite ; 7. NANOMATERIALS WITH CORE-SHELL MORPHOLOGY ; 7.1. Nanoparticle with Metal Core ; 7.2. Nanoparticles with Metal Oxide Core ; 7.3. Nanoparticle with Sio2 Core ; 7.4. Chalcogenide Core-Shell ; 8. OTHER NANOMATERIAL ; 8.1. Metal Phosphate ; 8.2. Metal Carbonate ; 8.3. Metal Fluoride ; 8.4. Single-Walled Carbon Nanotube (SWCNT) ; 8.5. Polyaniline ; 8.6. Metal Chalcogenides ; 8.6.1. Metal Sulfides ; 8.6.2. Metal Telluride ; 8.6.3. Metal Selenide ; 8.7. Coordination Polymers ; CONCLUSION.
ACKNOWLEDGMENTS REFERENCES ; INDUSTRIAL-SCALE PROCESSING OF LIQUIDS BY HIGH-INTENSITY ACOUSTIC CAVITATION: THE UNDERLYING THEORY AND ULTRASONIC EQUIPMENT DESIGN PRINCIPLES ; ABSTRACT ; 1. INTRODUCTION ; 2. SHOCK-WAVE MODEL OF ACOUSTIC CAVITATION ; 2.1. Visual Observations of Acoustic Cavitation ; 2.2. Justification for the Shock-Wave Approach ; 2.3. Theory ; 2.3.1. Oscillations of a Single Gas Bubble ; 2.3.2. Cavitation Region ; 2.4. Set-up of the Equations for the Experimental Verification ; 2.4.1. Low Oscillatory Velocities of Acoustic Radiator.
2.4.2. High Oscillatory Velocities of Acoustic Radiator 2.4.3. Interpretation of the Experimental Results of the Work [26] ; 2.5. Experimental Setup ; 2.6. Experimental Results ; 2.7. Section Conclusion ; 3. SELECTION AND DESIGN OF THE MAIN COMPONENTS OF HIGH- CAPACITY ULTRASONIC SYSTEMS ; 3.1. Electromechanical transducer selection considerations ; 3.2. High Power Acoustic Horn Design Principles ; 3.2.1. Criteria For Matching Magnetostrictive Transducer to Water at Cavitation ; 3.2.2. Five-Elements Matching Horns ; 3.2.2.1. Design Principles ; 3.2.2.2. Analysis of Five-Element Horns.
eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide