FirstCity
Welcome to First City University College Library iPortal | library@firstcity.edu.my | +603-7735 2088 (Ext. 519)
Amazon cover image
Image from Amazon.com

Electrostatics : theory and applications / Camille L. Bertrand, editor.

Contributor(s): Material type: TextTextSeries: Physics research and technologyPublisher: New York : Nova Science Publishers, c2011Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781617280443
  • 1617280445
Subject(s): Genre/Form: Additional physical formats: Print version:: ElectrostaticsDDC classification:
  • 537/.2 22
LOC classification:
  • QC571
Online resources:
Contents:
ELECTROSTATICS:THEORY AND APPLICATIONS; ELECTROSTATICS: THEORY AND APPLICATIONS ; CONTENTS ; PREFACE ; ASYMMETRIC ELECTROSTATIC FORCES AND A NEW ELECTROSTATIC GENERATOR ; Abstract ; 1. Asymmetric Force (AF) ; 1.1. Purpose ; 1.2. Simulation Methods and Results ; 1.3. Cause of the AF ; 1.4. Simulation of the Best Shape for the AF ; 1.5. A Simple Experiment Confirming the Existence of the AF ; 1.6. Applications ; 1.7. Conclusion ; 2. The Asymmetric Image Force (AIF) ; 2.1. Purpose ; 2.2. Simulation Result ; 2.3. Experimental Results ; 2.4. Cause of the AIF ; 2.5. Applications.
2.6. Conclusion 3. The Asymmetric Coulomb Force ; 3.1. Purpose ; 3.2. Simulation Results ; 3.3. Experiment Results ; 3.4. A Comparison of the Experimental and Simulation Results ; 3.5. Cause of the ACF ; 3.6. Conclusion ; 4. A New Electrostatic Generator (an Application of the ACF) ; 4.1. Purpose ; 4.2. Basic Theory ; 4.3. Simulation Results of the Energy Gained Using the New Electrostatic Generator ; 4.4. Manufacturing Method of a New Electrostatic Generator ; 4.5. Predicted Performance of the New Electrostatic Generator ; 4.6. Conclusion ; 4.7. Other Applications of the ACF.
5. A Miracle Charge Carrier that Can Move forward in a Reverse Field 5.1. Background ; 5.2. Simulation Result ; 5.3. Conclusion ; Conclusion ; Appendix 1. An Explanation of the Simulation Method (A Bi- Dimensional Axi-Symmetric Finite Difference Method) ; Appendix 2. Relationship between the Approximate Formula for the Gradient Force and the Simulation Method of the Electrostatic Force Acting on a Non-Charged Cylinder in a Convergent Field ; References ; CORONA TREATMENT OF POLYMER FILMS ; Abstract ; 1. Introduction ; 2. Materials (PP, PET and PTFE).
3. Positive and Negative Corona Treatment 4. Investigation of Changes in Charged Surfaces Initiated by Corona Treatment ; 4.1. Analyzed by XPS ; 4.2. Analyzed by an Optical Method ; 5. Influence of Different Treatment on Charged Films Stability ; 5.1. Storage at Pressure Lower Than Atmospheric ; 5.2. Irradiation by a Low Energy Laser ; 6. The Corona Treatment Influence on Holographic Recording ; Conclusion ; References ; NUMERICAL SIMULATION FOR ELECTROSTATIC FIELD, FLOW FIELD AND PARTICLE BEHAVIOR IN A WIRE-PLATE ELECTROSTATIC PRECIPITATOR ; Abstract ; 1. Introduction.
2. Electric Field 2.1. Assumptions ; 2.2. Governing Equations ; 2.3. Numerical Method ; 2.3.1. Traditional Finite-Difference Technique ; 2.3.2. Control-Volume Method ; 2.4. Boundary Conditions ; 2.5. Numerical Experiments ; 3. EHD Turbulent Flow Field ; 3.1. Assumptions ; 3.2. Mathematic Model and Boundary Condition ; 3.3. Boundary Conditions ; 3.4. Numerical Method ; 3.5. Numerical Experiments ; 4. Particle Charging and Tracing ; 4.1. Assumptions ; 4.2. Particle Charging Kinetics ; 4.3. Particle Movement ; 4.3.1. Particle Trajectory Model ; 4.3.2. Particle Random Walk Model.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Description based on print version record.

English.

ELECTROSTATICS:THEORY AND APPLICATIONS; ELECTROSTATICS: THEORY AND APPLICATIONS ; CONTENTS ; PREFACE ; ASYMMETRIC ELECTROSTATIC FORCES AND A NEW ELECTROSTATIC GENERATOR ; Abstract ; 1. Asymmetric Force (AF) ; 1.1. Purpose ; 1.2. Simulation Methods and Results ; 1.3. Cause of the AF ; 1.4. Simulation of the Best Shape for the AF ; 1.5. A Simple Experiment Confirming the Existence of the AF ; 1.6. Applications ; 1.7. Conclusion ; 2. The Asymmetric Image Force (AIF) ; 2.1. Purpose ; 2.2. Simulation Result ; 2.3. Experimental Results ; 2.4. Cause of the AIF ; 2.5. Applications.

2.6. Conclusion 3. The Asymmetric Coulomb Force ; 3.1. Purpose ; 3.2. Simulation Results ; 3.3. Experiment Results ; 3.4. A Comparison of the Experimental and Simulation Results ; 3.5. Cause of the ACF ; 3.6. Conclusion ; 4. A New Electrostatic Generator (an Application of the ACF) ; 4.1. Purpose ; 4.2. Basic Theory ; 4.3. Simulation Results of the Energy Gained Using the New Electrostatic Generator ; 4.4. Manufacturing Method of a New Electrostatic Generator ; 4.5. Predicted Performance of the New Electrostatic Generator ; 4.6. Conclusion ; 4.7. Other Applications of the ACF.

5. A Miracle Charge Carrier that Can Move forward in a Reverse Field 5.1. Background ; 5.2. Simulation Result ; 5.3. Conclusion ; Conclusion ; Appendix 1. An Explanation of the Simulation Method (A Bi- Dimensional Axi-Symmetric Finite Difference Method) ; Appendix 2. Relationship between the Approximate Formula for the Gradient Force and the Simulation Method of the Electrostatic Force Acting on a Non-Charged Cylinder in a Convergent Field ; References ; CORONA TREATMENT OF POLYMER FILMS ; Abstract ; 1. Introduction ; 2. Materials (PP, PET and PTFE).

3. Positive and Negative Corona Treatment 4. Investigation of Changes in Charged Surfaces Initiated by Corona Treatment ; 4.1. Analyzed by XPS ; 4.2. Analyzed by an Optical Method ; 5. Influence of Different Treatment on Charged Films Stability ; 5.1. Storage at Pressure Lower Than Atmospheric ; 5.2. Irradiation by a Low Energy Laser ; 6. The Corona Treatment Influence on Holographic Recording ; Conclusion ; References ; NUMERICAL SIMULATION FOR ELECTROSTATIC FIELD, FLOW FIELD AND PARTICLE BEHAVIOR IN A WIRE-PLATE ELECTROSTATIC PRECIPITATOR ; Abstract ; 1. Introduction.

2. Electric Field 2.1. Assumptions ; 2.2. Governing Equations ; 2.3. Numerical Method ; 2.3.1. Traditional Finite-Difference Technique ; 2.3.2. Control-Volume Method ; 2.4. Boundary Conditions ; 2.5. Numerical Experiments ; 3. EHD Turbulent Flow Field ; 3.1. Assumptions ; 3.2. Mathematic Model and Boundary Condition ; 3.3. Boundary Conditions ; 3.4. Numerical Method ; 3.5. Numerical Experiments ; 4. Particle Charging and Tracing ; 4.1. Assumptions ; 4.2. Particle Charging Kinetics ; 4.3. Particle Movement ; 4.3.1. Particle Trajectory Model ; 4.3.2. Particle Random Walk Model.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide