000 | 05506cam a2200697 i 4500 | ||
---|---|---|---|
001 | on1162572452 | ||
003 | OCoLC | ||
005 | 20201015091509.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 100630s2010 nyu ob 001 0 eng | ||
010 | _a 2020686454 | ||
040 |
_aDLC _beng _erda _cDLC _dVLY _dN$T _dYDXCP _dE7B _dOCLCF _dNLGGC _dEBLCP _dVTS _dAGLDB _dAU@ _dSTF _dM8D |
||
019 |
_a750638340 _a1058333875 |
||
020 |
_a9781621001478 _qebook |
||
020 | _a1621001474 | ||
020 |
_z9781617286520 _qhardcover |
||
020 | _z1617286524 | ||
029 | 1 |
_aAU@ _b000051413024 |
|
029 | 1 |
_aAU@ _b000062325294 |
|
029 | 1 |
_aDEBBG _bBV043093903 |
|
029 | 1 |
_aDEBSZ _b421558075 |
|
035 |
_a(OCoLC)1162572452 _z(OCoLC)750638340 _z(OCoLC)1058333875 |
||
042 | _apcc | ||
050 | 0 | 0 | _aQD801 |
072 | 7 |
_aSCI _x013060 _2bisacsh |
|
072 | 7 |
_aTEC _x009010 _2bisacsh |
|
082 | 0 | 0 |
_a660/.2842 _222 |
049 | _aMAIN | ||
245 | 0 | 0 |
_aSonochemistry : _btheory, reactions, syntheses, and applications / _cFilip M. Nowak, editor. |
264 | 1 |
_aNew York : _bNova Science Publishers, Inc., _c[2010] |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aChemical engineering methods and technology | |
504 | _aIncludes bibliographical references and index. | ||
588 | _aDescription based on print version record. | ||
546 | _aEnglish. | ||
505 | 0 | _aSONOCHEMISTRY: THEORY, REACTIONS, SYNTHESES, AND APPLICATIONS ; SONOCHEMISTRY: THEORY, REACTIONS, SYNTHESES, AND APPLICATIONS ; CONTENTS ; PREFACE ; SONOCHEMISTRY: A SUITABLE METHOD FOR SYNTHESIS OF NANO-STRUCTURED MATERIALS ; ABSTRACT ; 1. INTRODUCTION ; 2. SYNTHESIS OF NANOMETALS ; 2.1. Gold ; 2.2. Palladium ; 2.3. Tellurium ; 2.4. Tin ; 2.5. Ruthenium ; 2.6. Germanium ; 2.7. Selenium ; 2.8. Silver ; 3. SYNTHESIS OF METALLIC NANOALLOYS ; 3.1. Sn-Bi ; 3.2. Pd-Sn ; 3.3. Pt-Ru ; 3.4. Co-B ; 3.5. Au-Ag ; 3.6. Bimetallic Nanoparticles with Core-Shell Morphology ; 4. METAL OXIDE. | |
505 | 8 | _a4.1. ZnO 4.2. CuO ; 4.3. V2O5 ; 4.4. Iron oxide ; 4.5. Manganese Oxide ; 4.6. In2O3 ; 4.7. TiO2 ; 4.8. PbO2 ; 4.9. Other Metallic Oxide ; 4.10. Rare-Earth Oxide ; 5. THE SONOCHEMICAL SYNTHESIS OF MIXED OXIDES ; 5.1. MVO4 ; 5.2. MTiO3 ; 5.3. MAl2O4 ; 5.4. MWO4 ; 5.5. MoO4 ; 5.6. Ferrites ; 6. NANOCOMPOSITES ; 6.1. Metal Oxide-Metal (Oxide) Nanocomposite ; 6.2. Organic-Inorganic Nanocomposite ; 6.2.1. Natural Fibers ; 6.2.2. Polymeric Based Nanocomposites ; 6.2.2.1 Poly(Methylacrylate) and Poly(Methylmethacrylate) ; 6.2.2.2. Polystyrene ; 6.2.2.3. Polypropylene. | |
505 | 8 | _a6.2.2.4. Conducting Polymer 6.3. Carbonaceous Nanocomposite ; 6.4. Other Nanocomposite ; 7. NANOMATERIALS WITH CORE-SHELL MORPHOLOGY ; 7.1. Nanoparticle with Metal Core ; 7.2. Nanoparticles with Metal Oxide Core ; 7.3. Nanoparticle with Sio2 Core ; 7.4. Chalcogenide Core-Shell ; 8. OTHER NANOMATERIAL ; 8.1. Metal Phosphate ; 8.2. Metal Carbonate ; 8.3. Metal Fluoride ; 8.4. Single-Walled Carbon Nanotube (SWCNT) ; 8.5. Polyaniline ; 8.6. Metal Chalcogenides ; 8.6.1. Metal Sulfides ; 8.6.2. Metal Telluride ; 8.6.3. Metal Selenide ; 8.7. Coordination Polymers ; CONCLUSION. | |
505 | 8 | _aACKNOWLEDGMENTS REFERENCES ; INDUSTRIAL-SCALE PROCESSING OF LIQUIDS BY HIGH-INTENSITY ACOUSTIC CAVITATION: THE UNDERLYING THEORY AND ULTRASONIC EQUIPMENT DESIGN PRINCIPLES ; ABSTRACT ; 1. INTRODUCTION ; 2. SHOCK-WAVE MODEL OF ACOUSTIC CAVITATION ; 2.1. Visual Observations of Acoustic Cavitation ; 2.2. Justification for the Shock-Wave Approach ; 2.3. Theory ; 2.3.1. Oscillations of a Single Gas Bubble ; 2.3.2. Cavitation Region ; 2.4. Set-up of the Equations for the Experimental Verification ; 2.4.1. Low Oscillatory Velocities of Acoustic Radiator. | |
505 | 8 | _a2.4.2. High Oscillatory Velocities of Acoustic Radiator 2.4.3. Interpretation of the Experimental Results of the Work [26] ; 2.5. Experimental Setup ; 2.6. Experimental Results ; 2.7. Section Conclusion ; 3. SELECTION AND DESIGN OF THE MAIN COMPONENTS OF HIGH- CAPACITY ULTRASONIC SYSTEMS ; 3.1. Electromechanical transducer selection considerations ; 3.2. High Power Acoustic Horn Design Principles ; 3.2.1. Criteria For Matching Magnetostrictive Transducer to Water at Cavitation ; 3.2.2. Five-Elements Matching Horns ; 3.2.2.1. Design Principles ; 3.2.2.2. Analysis of Five-Element Horns. | |
590 |
_aeBooks on EBSCOhost _bEBSCO eBook Subscription Academic Collection - Worldwide |
||
650 | 0 |
_aSonochemistry. _0http://id.loc.gov/authorities/subjects/sh91005029 |
|
650 | 7 |
_aSCIENCE _xChemistry _xIndustrial & Technical. _2bisacsh |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xChemical & Biochemical. _2bisacsh |
|
650 | 7 |
_aSonochemistry. _2fast _0(OCoLC)fst01126685 |
|
655 | 4 | _aElectronic books. | |
655 | 0 | _aElectronic books. | |
700 | 1 |
_aNowak, Filip M., _eeditor. |
|
776 | 0 | 8 |
_iPrint version: _tSonochemistry _dNew York : Nova Science Publishers, c2010. _z9781617286520 (hardcover) _w(DLC) 2010025362 |
830 | 0 |
_aChemical engineering methods and technology. _0http://id.loc.gov/authorities/names/no2010131169 |
|
856 | 4 | 0 | _uhttps://libproxy.firstcity.edu.my:8443/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=384336 |
938 |
_aProQuest Ebook Central _bEBLB _nEBL3022028 |
||
938 |
_aebrary _bEBRY _nebr10686368 |
||
938 |
_aEBSCOhost _bEBSC _n384336 |
||
938 |
_aYBP Library Services _bYANK _n7119613 |
||
994 |
_a92 _bMYFCU |
||
999 |
_c57829 _d57829 |