000 | 05557cam a2200685Ki 4500 | ||
---|---|---|---|
001 | ocn928387446 | ||
003 | OCoLC | ||
005 | 20200827105436.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 151109s2015 nju o 000 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dYDXCP _dOCLCO _dEBLCP _dOCLCO _dOCLCQ _dAGLDB _dOCLCQ _dNJR _dOCLCQ _dVNS _dVTS _dM8D _dOCLCQ |
||
019 | _a946309189 | ||
020 |
_a9789814696357 _q(electronic bk.) |
||
020 |
_a9814696358 _q(electronic bk.) |
||
020 | _z9789814696340 | ||
020 | _z981469634X | ||
029 | 1 |
_aDEBBG _bBV043785046 |
|
029 | 1 |
_aDEBSZ _b472872222 |
|
035 |
_a(OCoLC)928387446 _z(OCoLC)946309189 |
||
050 | 4 |
_aHD30.25 _b.M68 2015eb |
|
072 | 7 |
_aBUS _x082000 _2bisacsh |
|
072 | 7 |
_aBUS _x041000 _2bisacsh |
|
072 | 7 |
_aBUS _x042000 _2bisacsh |
|
072 | 7 |
_aBUS _x085000 _2bisacsh |
|
082 | 0 | 4 |
_a658.80072/7 _223 |
049 | _aMAIN | ||
245 | 0 | 0 |
_aQuantitative modelling in marketing and management / _c[edited] by Luiz Moutinho & Kun-Huang Huarng. |
250 | _a2nd edition. | ||
264 | 1 |
_aNew Jersey : _bWorld Scientific, _c[2015] |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
588 | 0 | _aPrint version record. | |
504 | _aReferencesChapter 2. Role of Structural Equation Modelling in Theory Testing and Development; 1. Introduction; 1.1. Structural equation modelling; 1.2. Terminology, rules, and conventions; 2. Structural Equation Modelling-Example; 2.1. Model identification; 2.2. Goodness-of-fit; 2.3. Model fit summary for the current example; 3. Model Estimation, Modification, and Interpretation; APPENDIX; References; Chapter 3. Partial Least Squares Path Modelling in Marketing and Management Research: An Annotated Application; 1. Introduction; 2. The PLSPM Algorithm. | ||
505 | 0 | _aPreface; Introduction; Part 1. Statistical Modelling; Chapter 1. A Review of the Major Multidimensional Scaling Models for the Analysis of Preference/Dominance Data in Marketing; 1. Introduction; 2. The Vector MDS Model; 2.1. The individual level vector MDS model; 2.2. The segment level or clusterwise vector MDS model; 3. The Unfolding MDS Model; 3.1. The individual level simple unfolding model; 3.2. The segment level or clusterwise multidimensional unfolding model; 4. A Marketing Application; 4.1. The vector model results; 4.2. The simple unfolding model results; 5. Discussion. | |
505 | 8 | _a3. PLSPM Properties: Strengths andWeaknesses4. Applied Example: The Role of Trust on Consumers Adoption of Online Banking; 4.1. The model; 4.2. Method; 4.3. Estimating a PLSPM. Step 1. Dealing with second order factors; 4.4. Estimating a PLSPM. Step 2. Validating the measurement (outer) model; 4.4.1. Reliability; 4.4.2. Convergent validity; 4.4.3. Discriminant validity; 4.5. Estimating a PLSPM. Step 3. Assessing the structural (inner) model; 4.5.1. R2 of dependent LV; 4.5.2. Predictive relevance; 4.6. Estimating a PLSPM. Step 4. Hypotheses testing; 5. Conclusion; References. | |
505 | 8 | _aChapter 4. Statistical Model Selection1. Introduction; 2. Some Example Analyses; 2.1. Tourism in Portugal; 2.2. Union membership; 3. Problem 1: Including Non-Important Variables in the Model; 3.1. Simulating data; 3.2. Models derived from simulated data; 4. Problem 2: Not Including Important Variables in the Model; 4.1. Modelling fuel consumption; 5. Conclusion; References; Part 2. Computer Modelling; Chapter 5. Artificial Neural Networks and Structural Equation Modelling: An Empirical Comparison to Evaluate Business Customer Loyalty; 1. Introduction; 2. Literature Review; 2.1. Loyalty. | |
505 | 8 | _a2.2. Loyalty determinants3. Research Method; 3.1. ANNs; 3.2. Structural equation modelling; 4. Comparisons; 4.1. Latent variables; 4.2. Causal interactions; 4.3. Learned associative properties; 4.4. Interconnectivity-neurons and indicators; 4.5. Predictability; 5. Results; 5.1. Results from the SEM; 5.2. Results from ANN; 6. Comparing Modelling Performance; 7. Comparing Results; 8. Conclusion; References; Chapter 6. The Application of NN to Management Problems; 1. Artificial Neural Networks in the Management Field; 2. Why use ANNs?; 3. ANNs; 3.1. Architecture of NNs; 3.2. Learning algorithms. | |
590 |
_aeBooks on EBSCOhost _bEBSCO eBook Subscription Academic Collection - Worldwide |
||
650 | 0 |
_aManagement _xMathematical models. |
|
650 | 0 |
_aMarketing _xMathematical models. _0http://id.loc.gov/authorities/subjects/sh85081341 |
|
650 | 7 |
_aBUSINESS & ECONOMICS _xIndustrial Management. _2bisacsh |
|
650 | 7 |
_aBUSINESS & ECONOMICS _xManagement. _2bisacsh |
|
650 | 7 |
_aBUSINESS & ECONOMICS _xManagement Science. _2bisacsh |
|
650 | 7 |
_aBUSINESS & ECONOMICS _xOrganizational Behavior. _2bisacsh |
|
650 | 7 |
_aManagement _xMathematical models. _2fast _0(OCoLC)fst01007201 |
|
650 | 7 |
_aMarketing _xMathematical models. _2fast _0(OCoLC)fst01010232 |
|
655 | 4 | _aElectronic books. | |
655 | 0 | _aElectronic books. | |
700 | 1 | _aMoutinho, Luiz. | |
700 | 1 | _aHuarng, Kun-Huang. | |
776 | 0 | 8 |
_iPrint version: _tQuantitative modelling in marketing and management. _b2nd edition _z9789814696340 _w(DLC) 2015020809 _w(OCoLC)910802562 |
856 | 4 | 0 | _uhttps://libproxy.firstcity.edu.my:8443/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1091550 |
938 |
_aProQuest Ebook Central _bEBLB _nEBL4394928 |
||
938 |
_aEBSCOhost _bEBSC _n1091550 |
||
938 |
_aYBP Library Services _bYANK _n12681862 |
||
994 |
_a92 _bMYFCU |
||
999 |
_c47608 _d47608 |